skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fu, Pan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 9, 2026
  2. Abstract Metasurfaces offer complete control of optical wavefront at the subwavelength scale, advancing a new class of artificial planar optics, including lenses, waveplates, and holograms, with unprecedented merits over conventional optical components. In particular, the ultrathin, flat, and compact characteristics of metasurfaces facilitate their integration with semiconductor devices for the development of miniaturized and multifunctional optoelectronic systems. In this work, generation of structured light is implemented at an ultracompact wafer‐level through the monolithic integration of metasurface with standard vertical cavity surface‐emitting lasers (VCSELs). This work opens new perspectives for the design of structured light systems with compactness, lightweight, and scalability. Ultracompact beam structured laser chips with versatile functionalities are experimentally demonstrated, including multichannel beams array generation, on‐chip large‐angle beam steering up to 60°, and wafer‐level holographic beam shaping with a wide field of view (about 124°). The results will promote the development of compact light structuring systems with great potential in 3D imaging, displays, robotic vision, human–computer interaction, and augmented/virtual reality. 
    more » « less